MATH 3060 Assignment 5 solution

Chan Ki Fung

November 19, 2021

1. Suppose f is not uniformly continuous, then we can find a positive number ϵ and sequences $(x_n), (x'_n)$ in E so that

$$
d_X(x_n, x'_n) \to 0,
$$

and

$$
d_Y(f(x_n), f(x'_n)) \ge \epsilon.
$$

Note that the two conditions above can pass to subsequences. Since E is compact, we may assume $x_n \to x \in E$, but then

$$
d_X(x'_n, x) \le d_X(x'_n, x_n) + d_X(x_n, x) \to 0,
$$

so we have $x'_n \to x$, and hence $f(x'_n) \to f(x)$. This is a contradiction because

$$
\epsilon \le d_Y(f(x_n), f(x'_n)) \le d_Y(f(x_n), f(x)) + d_Y(f(x), f(x'_n)) \to 0.
$$

2. Note that $f'_n(x) = nx^{n-1}$. For $x \in [0, \delta],$

$$
|f_n'(x)| \le n\delta^{n-1} \to 0
$$

as $n \to \infty$. In particular, $|f'_n|$ is uniformly bounded, so f_n is equicontinuous on $[0, \delta]$.

On the other hand, taking $x_n = 2^{-1/n} < 1$. We have $x_n \to 1$ as $n \to 1$ but $|f_n(x_n) - f_n(1)| = \frac{1}{2}$, so f_n is not equicontinous on [0, 1].

3. We will show that the image is uniformly bounded and equicontinuous, then we can apply the Ascoli's theorem to conclude. First of all, for $f \in C([0,1])$ and $x \in [0,1]$, we have

$$
|Tf(x)| = \left|\cos^2 x + \int_0^x \frac{f(t)}{1 + f^2(t)} dt\right|
$$

\n
$$
\leq 1 + \left|\int_0^x dt\right|
$$

\n
$$
= 1 + x
$$

\n
$$
\leq 2,
$$

and on the other hand, let $\epsilon > 0$. If we take $\delta_1 = \epsilon/4$, then for any $x, x' \in$ $[0, 1]$ with $|x - x'| < \delta_1$, we have $|\cos^2 x - \cos^2 x'| = 2|\cos \xi \sin \xi||x - x'|$ $\epsilon/2$ (Mean value theorem). And hence

$$
|Tf(x) - Tf(x')| < \frac{\epsilon}{2} + \left| \int_{x'}^{x} \frac{f(t)}{1 + f^2(t)} dt \right|
$$
\n
$$
\leq \frac{\epsilon}{2} + |x - x'|
$$
\n
$$
< \epsilon.
$$

So $T(C([0, 1]))$ is equicontinuous.

- 4. Note that K is bounded by some constant $M > 0$, g is bounded by some constant $M' > 0$ and both of them are uniformly continuous by question 1.
	- (a) Let $\epsilon > 0$, we choose $\delta > 0$ so that $|\lambda| M (b a) \delta < \epsilon$. Then for $||f - f'|| < \delta$, we have

$$
|T_{\lambda}f(x) - T_{\lambda}f'(x)| = \left| \lambda \int_{a}^{b} K(x,t)(f(t) - f'(t))dt \right|
$$

$$
\leq \left| \lambda \int_{a}^{b} M\delta dt \right|
$$

$$
< \epsilon.
$$

(b) Let's assume $|f(x)| \leq L$ for any $f \in \mathcal{C}$. We need to show $T_{\lambda}(\mathcal{C})$ is bounded and equicontinuous. Boundedness follows from the definition of T_{λ} :

 $||T_{\lambda}f|| \leq |\lambda| ML(b-a) + M'.$

To show equicontinuity, let $\epsilon > 0$, we can choose $\delta_1 > 0$ so that $|g(x) - g(x')| < \epsilon/2$ whenever $|x - x'| < \delta_1$. Choose $\epsilon' > 0$ so that $|\lambda|(b-a)L\epsilon' < \epsilon/2$, we can also find $\delta_2 > 0$ so that $|K(x,t) K(x',t')$ < ϵ whenever $||(x-x',t-t')|| < \delta_2$. Now, take $\delta =$ $\min{\delta_1, \delta_2}$, if $|x - x'| < \delta$ and $f \in \mathcal{C}$, then

$$
|T\lambda f(x) - T_{\lambda}f(x')| < \left|\lambda \int_{a}^{b} (K(x,t) - K(x',t))f(t)dt\right| + \frac{\epsilon}{2}
$$

$$
\leq |\lambda|(b-a)L\epsilon' + \frac{\epsilon}{2}
$$

$$
< \epsilon.
$$