MATH 3060 Assignment 5 solution

Chan Ki Fung

November 19, 2021

1. Suppose f is not uniformly continuous, then we can find a positive number ϵ and sequences $(x_n), (x'_n)$ in E so that

$$d_X(x_n, x'_n) \to 0,$$

and

$$d_Y(f(x_n), f(x'_n)) \ge \epsilon$$

Note that the two conditions above can pass to subsequences. Since E is compact, we may assume $x_n \to x \in E$, but then

$$d_X(x'_n, x) \le d_X(x'_n, x_n) + d_X(x_n, x) \to 0,$$

so we have $x'_n \to x$, and hence $f(x'_n) \to f(x)$. This is a contradiction because

$$\epsilon \le d_Y(f(x_n), f(x'_n)) \le d_Y(f(x_n), f(x)) + d_Y(f(x), f(x'_n)) \to 0.$$

2. Note that $f'_n(x) = nx^{n-1}$. For $x \in [0, \delta]$,

$$|f_n'(x)| \le n\delta^{n-1} \to 0$$

as $n \to \infty$. In particular, $|f'_n|$ is uniformly bounded, so f_n is equicontinuous on $[0, \delta]$.

On the other hand, taking $x_n = 2^{-1/n} < 1$. We have $x_n \to 1$ as $n \to 1$ but $|f_n(x_n) - f_n(1)| = \frac{1}{2}$, so f_n is not equicontinous on [0, 1].

3. We will show that the image is uniformly bounded and equicontinuous, then we can apply the Ascoli's theorem to conclude. First of all, for $f \in C([0, 1])$ and $x \in [0, 1]$, we have

$$|Tf(x)| = \left|\cos^2 x + \int_0^x \frac{f(t)}{1 + f^2(t)} dt\right|$$
$$\leq 1 + \left|\int_0^x dt\right|$$
$$= 1 + x$$
$$\leq 2,$$

and on the other hand, let $\epsilon > 0$. If we take $\delta_1 = \epsilon/4$, then for any $x, x' \in [0, 1]$ with $|x - x'| < \delta_1$, we have $|\cos^2 x - \cos^2 x'| = 2|\cos \xi \sin \xi| |x - x'| < \epsilon/2$ (Mean value theorem). And hence

$$|Tf(x) - Tf(x')| < \frac{\epsilon}{2} + \left| \int_{x'}^{x} \frac{f(t)}{1 + f^2(t)} dt \right|$$
$$\leq \frac{\epsilon}{2} + |x - x'|$$
$$< \epsilon.$$

So T(C([0, 1])) is equicontinuous.

- 4. Note that K is bounded by some constant M > 0, g is bounded by some constant M' > 0 and both of them are uniformly continuous by question 1.
 - (a) Let $\epsilon > 0$, we choose $\delta > 0$ so that $|\lambda|M(b-a)\delta < \epsilon$. Then for $||f f'|| < \delta$, we have

$$|T_{\lambda}f(x) - T_{\lambda}f'(x)| = \left|\lambda \int_{a}^{b} K(x,t)(f(t) - f'(t))dt\right|$$
$$\leq \left|\lambda \int_{a}^{b} M\delta dt\right|$$
$$< \epsilon.$$

(b) Let's assume $|f(x)| \leq L$ for any $f \in C$. We need to show $T_{\lambda}(C)$ is bounded and equicontinuous. Boundedness follows from the definition of T_{λ} :

 $||T_{\lambda}f|| \le |\lambda|ML(b-a) + M'.$

To show equicontinuity, let $\epsilon > 0$, we can choose $\delta_1 > 0$ so that $|g(x) - g(x')| < \epsilon/2$ whenever $|x - x'| < \delta_1$. Choose $\epsilon' > 0$ so that $|\lambda|(b-a)L\epsilon' < \epsilon/2$, we can also find $\delta_2 > 0$ so that $|K(x,t) - K(x',t')| < \epsilon$ whenever $||(x - x', t - t')|| < \delta_2$. Now, take $\delta = \min\{\delta_1, \delta_2\}$, if $|x - x'| < \delta$ and $f \in \mathcal{C}$, then

$$\begin{aligned} |T\lambda f(x) - T_{\lambda}f(x')| &< \left|\lambda \int_{a}^{b} (K(x,t) - K(x',t))f(t)dt\right| + \frac{\epsilon}{2} \\ &\leq |\lambda|(b-a)L\epsilon' + \frac{\epsilon}{2} \\ &< \epsilon. \end{aligned}$$